Integrated Watershed Modeling and
Accounting of Terrestrial and Aquatic Carbon
Budgets

Xuesong (John) Zhang

USDA-ARS, Hydrology and Remote Sensing Laboratory, Beltsville, MD, 20705

Presented by Terry Nipp

Senior Scientist at Texas A&M’s Blackland Research and Extension Center

ACES: A Community on Ecosystem Services Conference 2024
December 9-12, 2024
Austin, Texas USA



Incomplete accounting of terrestrial-aquatic
carbon fluxes

PgC yr?

IPCC major carbon cycle components (2002-2011)

s
N

Atmosphere
03

Rivers

Bernhard Wehrli, 2013

o&\

%eé}a»

So-called missing
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10 Uncertain terrestrial-aquatic carbon fluxes
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Recent results indicate that aquatic fluxes
subject to significant uncertainty:

* Land to Inland water: 1.7 - 5.7 PgC yr*!

* Inland water to atmosphere: 1.0 — 3.88 PgC
yr?

* Inland water burial: 0.15 - 1.6 PgC yr!

(Ciais et al., 2013, Tranvik et al., 2009, Wehrli, 2013,
Aufdenkampe et al., 2011, Mendonga et al., 2017, Stallard,
1998, Bastviken et al., 2011, Cole et al., 2007, Raymond et
al., 2013, Sawakuchi et al., 2017, Drake et al. 2018)
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== Connections between ecosystems

Put together pieces of the watershed scale carbon cycling puzzle
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Watershed modeling: The Terrestrial and Aquatic Sciences
Convergence (TASC) model
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Terrestrial carbon module

» Schematic representation of new
SOM-residue dynamics in TASC.

 Algorithms are derived from
CENTURY, EPIC, DSSAT, DNDC,

and ORCHIDEE.

Zhang, X., lzaurralde, R.C., Arnold, J.G., Williams, J.R. and
Srinivasan, R., 2013. Modifying the soil and water
assessment tool to simulate cropland carbon flux: model
development and initial evaluation. Science of the Total

Environment, 463, pp.810-822.
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Continued development and evaluation of
aquatic carbon processes
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Du, X., Zhang, X., Mukundan, R., Hoang, L. and Owens, E.M., 2019. Integrating terrestrial and aquatic processes toward watershed scale modeling of dissolved organic carbon fluxes. Environmental

Pollution, 249, pp.125-135.
Qij, J., Zhang, X., Lee, S., Wu, Y., Moglen, G.E. and McCarty, G.W., 2020. Modeling sediment diagenesis processes on riverbed to better quantify aquatic carbon fluxes and stocks in a small
watershed of the Mid-Atlantic region. Carbon Balance and Management, 15(1), pp.1-14.
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Evaluating TASC for simulating
cropland carbon fluxes at
AmeriFlux towers
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Zhang, X., lzaurralde, R.C., Arnold, J.G., Williams, J.R. and Srinivasan, R., 2013. Modifying the soil and water assessment tool to simulate cropland carbon flux: model
development and initial evaluation. Science of the Total Environment, 463, pp.810-822.



Evaluation of TASC for soil organic carbon simulation
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Liang, K., Qi, J., Zhang, X. and Deng, J., 2022. Replicating measured site-scale
soil organic carbon dynamics in the US Corn Belt using the SWAT-C
model. Environmental Modelling & Software, 158, p.105553.
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(a) Sediment yield by rotation type

CWMM-PT CC-PT M-NT CS-NT 1951-98

Evaluating TASC for simulating eroded
soil organic carbon
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(b) Eroded C yield by rotation type
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Sediment and eroded C yields for different crop
rotations. 1951-1970: CWMM-PT; 1971-75: CC-
PT; 1976-1983: M-NT; 1984-1998: CS-NT.

The experimental site is a small watershed (W118)

Zhang, X., 2018. Simulating eroded soil organic carbon with the SWAT-C located within the USDA's NAEW research 3tation
, X, . Simulati i i wi - o , o , .
model. Environmental Modelling & Software, 102, pp.39-48. (40 22N, 81" 48 W) near Coshocton, Ohio.



Model Evaluation for POC and
DOC fluxes
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particulate organic carbon fluxes from two small watersheds in the
northeastern United States. Environmental Modelling & Software, 124,
p.104601.
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Dissolved Organic Carbon Production from Variable Source
Areas

» New York City’'s Water Supply Watersheds (e.g.,Neversink Reservoir watershed)
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Mukundan, R., Gelda, R., Moknatian, M., Zhang, X. and Steenhuis, T., 2023.
Watershed Scale Modeling of Dissolved Organic Carbon Export from
Variable Source Areas. Journal of Hydrology, p.130052.




Case Study 1. Model simulation of Net
Ecosystem Exchange at a corn field
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Simulated and flux tower observed NEE from a corn field in the
Tuckahoe Watershed.
P The TASC model simulated average daily NEE was -13.4 kgC ha‘l, slightly
RN SERREYSED lower than the observed daily average of -12.4 kgC ha-'. The correlation
Lower Chesapeake Bay Long- between the time series of observed and simulated daily NEE is 0.73.
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Significance of lateral carbon fluxes and ongoing efforts
to elucidate the fate of laterally transported carbon

Respiration =
NPP = 8104 Grain = 3357 4333
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Grounditiy The fate of the laterally transported carbon in the
] Baceflon downstream aquatic environments is very complex and
Remﬁi:%f P (DOC=0.2; uncertain. For example, eroded POC can be deposited
PIe=2) to reiver bed, decomposed to CO2 and CH4,
SOC stocks: increase ca. 187 kg C year? ha'! resuspended during flooding, and discharged outside

Lateral carbon fluxes: 227 kg C year? ha'! of the watershed.

Luo, X., Risal, A., Qi, J., Lee, S., Zhang, X., Alfieri, J.G. and McCarty, G.W., 2024. Modeling lateral carbon fluxes for agroecosystems in the Mid-Atlantic region: Control factors and importance for carbon
budget. Science of The Total Environment, 912, p.169128.

Qi, J., Zhang, X., Lee, S., Wu, Y., Moglen, G.E. and McCarty, G.W., 2020. Modeling sediment diagenesis processes on riverbed to better quantify aquatic carbon fluxes and stocks in a small watershed of the
Mid-Atlantic region. Carbon Balance and Management, 15, pp.1-14.



Case Study 2: The need of reducing dissolved organic carbon in

NYC’s water supply watersheds

Cannonsville Reservoir
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DOC modeling in NYC source watersheds: Cannonsville

SWAT-DOC model
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Balancing different carbon cycle impacts

Change in DOC load relative to 2010s
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CARBON CO-BENEFITS OF DEP’S
WATER SUPPLY FORESTLANDS

Tree-to-sequestration ratio

@ Number of trees in forest
O Total annual COz sequestration

Northern Red Oak
(hardwood)

Eastern Hemlock
(softwood)

® Protected forestland:

875,768 374,732
93,000 acres
® Number of trees:
5.3 million
® Number of species: 16,136 22,666
126 metric tons metric tons

® Hardwood trees sequester more
carbon than softwood trees

® Stored carbon:
5.9 million tons

® Forest management practices
should promote hardwood growth

® Annual COz sequestration:
177,000 tons

www.hazenandsawyer.com/work/projects/nycdep-water-energy-nexus-study/

Filtration Plant:
Upwards of $10 billion for construction +
$200-400 million for operation and maintenance/year

Forest carbon sequestration benefits:

$17.7 million/year

With a carbon price at $100/Ton CO,
(Jeff McMahon 2019, Forbes)



	Slide Number 1
	Incomplete accounting of terrestrial-aquatic carbon fluxes
	Guiding principles
	Watershed modeling: The Terrestrial and Aquatic Sciences Convergence (TASC) model
	Terrestrial carbon module
	Slide Number 6
	Slide Number 7
	Evaluation of TASC for soil organic carbon simulation
	Slide Number 9
	Model Evaluation for POC and DOC fluxes
	Dissolved Organic Carbon Production from Variable Source Areas
	Case Study 1. Model simulation of Net Ecosystem Exchange at a corn field
	Significance of lateral carbon fluxes and ongoing efforts to elucidate the fate of laterally transported carbon
	Slide Number 14
	Slide Number 15
	Slide Number 16

